
Beating the System:
Adding To Your Delphi Toolkit
by Dave Jewell

In the light of my renewed tussle
with the disk formatting saga

(see the panel below), I thought it
would be nice to take a month out
from “bleeding edge technology”
and present the code for one or two
straightforward useful Delphi
classes which I use in my own soft-
ware and which I’m sure you’ll find
useful too. Delphi supports reus-
ability at the component level, at
the form level, via units and (in
Delphi 3) you can even group a
bunch of components together and
save them as a single reusable ob-
ject. If, like me, you hate reinvent-
ing the wheel every time you start
a new project, Delphi is without a
doubt the best development
system around!

A Delimited String Class
One particular “wheel” that comes
round with monotonous regularity
is the need to parse a string of de-
limited items. Comma-delimited
strings are the norm, but you’ll also
find strings delimited with semico-
lons, Unix pipe characters (like this
|) and virtually anything else you
can think of. It’s therefore advis-
able to write yourself a reusable
parser class for chopping up a de-
limited string into a number of con-
secutive items. The code shown in
Listing 1 is my own offering.

Once you’ve created an instance
of a TDelimitedString object, you
can pass a string to it using the Text
property. This causes a private
internal method, ParseText to be
called which is responsible for
chopping up the string into its con-
stituent parts using the current
value of the Delimiter property.
This character property defaults to
a comma since I suspect that this is
the most common type of delim-
ited string that you’ll encounter.
However, you can change the prop-
erty to any other character that
you want. Doing so will call the

internal SetDelimiter method,
causing the string to be re-parsed
with the new delimiter character.

The various fields of the delim-
ited string appear in the Field array
property. If you’ve never used an
array property before, now’s a
good time to get acquainted with
this elegant Delphi feature. Array
properties enable you to imple-
ment a custom property which ap-
pears to users of the class
(remember, we’re not necessarily
talking about components, you can
declare public properties of any
class) as an array of Integer, Char,
String or whatever. To implement
an array property, all you have to
do is use the special syntax shown
for the Field property in Listing 1
and provide an internal method
which takes a single Index parame-
ter specifying which element of the
array you want to retrieve. In this
case, the GetField method vali-
dates the passed array index and
returns the appropriate string
from the internal TStringList

variable. The only other property I
haven’t mentioned is FieldCount,
which merely returns the number
of fields in the array.

Another nice feature of Delphi
Pascal (there are lots of them if you
look!) is the ability to specify a par-
ticular property as the default
property. This enables you to ref-
erence the default property of an
object without specifying the prop-
erty name. In this particular case,
it means we can replace this:

Caption := PageList.Field[Idx];

where the Field property is explic-
itly referenced, with this:

Caption := PageList[Idx];

where the default property is
implicitly referenced.

Of course, making use of this sort
of language feature is sheer lazi-
ness on my part. I take refuge in the
fact that Anders must be a kindred
spirit or he wouldn’t have put it

How Not To Design An Operating System: Revisited
Last month, I began with an apology. This month, I’d like to do the same,
but this time round I’m not apologising for bugs in my own code, I’m
apologising on behalf of Microsoft! You may remember that some time
ago, I presented a set of 16-bit routines which (amongst other things)
allowed you to read the serial number of a disk under Windows 3.1,
Windows 95 and NT. I worked quite hard on this code, in order to ensure
that it worked correctly on all three target platforms. However, since
that time, I’ve heard from a number of readers who’ve had problems
using the code under Windows for Workgroups (WFW), an operating
system which I don’t have installed and which I’ve never used to any
great extent. It transpires that if you have 32-bit disk access enabled
under WFW, then disk serial numbers aren’t available! Sigh. It seems
that the only way to get round this is to disable 32-bit disk access. I
suppose it’s possible that (under program control) one could turn off
32-bit disk access, do your serial number checking, and then restore
the status quo. However, as I indicated to the Editor, I don’t think I have
sufficient strength left to investigate this approach! I simply mention it
here so that you’ll know not to send me any more bug reports when
running the code under WFW. If you do, I may not be responsible for
my actions...

40 The Delphi Magazine Issue 23

into the language in the first place!
As further evidence of my terminal
sloth, you’ll notice that I’ve added
a second constructor to the class.
Although not immediately obvious
from the language specification, a
class can have as many construc-
tors as you want, subject to the
obvious restriction that they all
have a unique name. This means
that we can implement a Create-
Assign constructor to create an ob-
ject instance and set the Text
property at the same time. Sheer
indulgence!

When using multiple construc-
tors, it’s possible to use one con-
structor to call another, which is
what I’ve done here. The CreateAs-
sign constructor calls the ordinary
Create constructor to do most of
the work and then finishes up by
calling the Assign method. Al-
though I could have just coded the
nested call as Create rather than
Self.Create it’s good to use the lat-
ter form because it makes it clear
that you’re not trying to call the
inherited constructor.

Maybe this technique of calling
one constructor from another
causes you to raise an eyebrow?

Well, I’ve looked at the generated
object code very closely and I
believe there’s no problem. Inter-
nally, Delphi uses a Boolean flag
(passed on the stack as a hidden
parameter to a constructor) to
indicate whether or not a construc-
tor should actually allocate the
memory for a new object. When
you call one constructor from
another, this flag is zero, which
effectively just turns the inner
constructor into an ordinary
subroutine of the outer one.

The code fragment in Listing 2
shows how easy it is to use the
TDelimitedString class. In this case,

the program assumes that Delphi 1
is installed on the system and uses
our delimited string class to fill a
listbox with the contents of the
System page of the component pal-
ette. You can see the program
running in Figure 1.

Yes, I realise that later versions
of the TStrings class implement a
CommaText property, which pro-
vides support for comma-delim-
ited strings. However, I wanted to
provide a class which was portable
to 16-bit Delphi applications. Also,
the CommaText property will (as the
name suggests) only work with
comma-separated strings and has

unit Delimit;
interface
uses SysUtils, Classes;
type
 TDelimitedString = class (TObject)
 private
 fText: String;
 fList: TStringList;
 fDelimiter: Char;
 procedure ParseText;
 procedure SetText (const NewText: String);
 function GetFieldCount: Integer;
 function GetField (Index: Integer): String;
 procedure SetDelimiter (Delim: Char);
 public
 constructor Create;
 constructor CreateAssign (const NewText: String);
 destructor Destroy; override;
 property FieldCount: Integer read GetFieldCount;
 property Text: String read fText write SetText;
 property Delimiter: Char
 read fDelimiter write SetDelimiter;
 property Field [Index: Integer]: String
 read GetField; default;
 end;
implementation
constructor TDelimitedString.Create;
begin
 Inherited Create;
 fDelimiter := ’,’;
 fList := TStringList.Create;
end;
constructor TDelimitedString.CreateAssign(
 const NewText: String);
begin
 Self.Create;
 Text := NewText;
end;
destructor TDelimitedString.Destroy;
begin
 fList.Free;

 Inherited Destroy;
end;
procedure TDelimitedString.ParseText;
var
 i: Integer;
 buff: String;
begin
 fList.Clear;
 buff := Text;
 while Length (buff) > 0 do begin
 i := Pos (Delimiter, buff);
 if i = 0 then
 i := Length (buff) + 1;
 fList.Add (Copy (buff, 1, i - 1));
 Delete (buff, 1, i);
 end;
end;
procedure TDelimitedString.SetText (const NewText: String);
begin
 fText := NewText;
 ParseText;
end;
function TDelimitedString.GetFieldCount: Integer;
begin
 Result := fList.Count;
end;
function TDelimitedString.GetField (Index: Integer): String;
begin
 Result := ’’;
 if (Index >= 0) and (Index < fList.Count) then
 Result := fList.Strings [Index];
end;
procedure TDelimitedString.SetDelimiter (Delim: Char);
begin
 if fDelimiter <> Delim then begin
 fDelimiter := Delim;
 ParseText;
 end;
end;
end.

procedure TForm1.FormCreate(Sender: TObject);
var
 Idx: Integer;
 IniFile: TIniFile;
 PageList: TDelimitedString;
begin
 IniFile := TIniFile.Create (’C:\WINDOWS\DELPHI.INI’);
 try
 PageList := TDelimitedString.CreateAssign(
 IniFile.ReadString(’COMPLIB.DCL.Palette’, ’System’, ’’));
 try
 PageList.Delimiter := ’;’;
 for Idx := 0 to PageList.FieldCount - 1 do
 ListBox1.Items.Add (PageList [Idx]);
 finally
 PageList.Free;
 end;
 finally
 IniFile.Free;
 end;
end;

➤ Listing 2

➤ Listing 1

July 1997 The Delphi Magazine 41

no facility for using other delimiter
characters.

1066 And All That
Nowadays, many well-written ap-
plications maintain one or more
history lists on behalf of the user.
A history list enables users of your
program to quickly specify a pre-
viously used choice, rather than
having to type the whole thing in
again. History lists are very exten-
sively used by all versions of the
Delphi IDE. For example, type Ctrl-
F and you’ll see your last few
search strings in the Find Text dia-
log. History lists are generally (but
not always) employed within the
context of a TComboBox component
which has its Style property set to
csDropDown. This is important be-
cause it allows the user to enter
new choices into the history list so
that they’ll appear next time round.
History lists are all about remem-
bering the custom word list en-
tered by the user: a fixed list
doesn’t qualify.

When implementing a history
list, we also need to limit the total
number of items that are main-
tained in the list. For example, if the
Delphi 1 IDE was to remember
every single search string I’ve ever
entered into the Find Text dialog,
the storage involved might well
represent a fair chunk of my hard
disk by now! Not only that, it would
be very cumbersome to select from
such a large number of items when-
ever the history list appeared. In
the implementation presented
here, I’ve limited history lists to a
maximum of 10 items, but this can
easily be changed. As we shall see,
implementation choices are a
major factor here.

Another important aspect of his-
tory lists is the order in which
items appear. If you open up the
Find Text dialog, search for
MyList.Clear and then close the
dialog, you’ll naturally expect to
see the same text appear as the
first, selected, item in the com-
bobox next time you call up the
dialog. What this means is that
whatever choice was made last
time round has to appear as the
first choice next time round. This is
true whether or not the previous

choice was a new addition to the
history list, or was a pre-existing
item. From this you can see that
maintaining a history list involves
“freshening” choices by moving
them to the top of the list. This is
often referred to as an MRU list,
because the items are stored in
Most Recently Used order. Simi-
larly, when new items are added to
the history list, the oldest item
(that is, the item at the end of the
list) will be automatically deleted if
the list exceeds its maximum
permitted size.

With all this in mind, take a look
at the code in Listing 3. This code
was written so as to be compatible
with 16-bit and 32-bit Delphi, cour-
tesy of a bit of unpleasantness with
exit procedure handling! The unit
relies on the previously mentioned
delimited string unit and only
exports two routines of its own:
GetHistoryList and AddHistory-
String. The idea is that you give a
plain-English name to the history
string such as SearchItems. You can
then assign the Items property of a
combobox as easily as this:

ComboBox1.Items:=
 GetHistoryList(’SearchItems’);

Similarly, if you’re maintaining a
list of previously opened files, you
can assign to the HistoryList
property of your TOpenDialog com-
ponent with a single line of code:

OpenDialog.HistoryList :=
 GetHistoryList(’OpenedFiles’);

When you close a modal form, get
a value of True back from the
Execute method of your open dia-
log, or whatever, you can simply

update the appropriate history
string like this:

AddHistoryString(’SearchItems’,
 ComboBox1.Text);

or like this:

AddHistoryString(’OpenedFiles’,
 OpenDialog.FileName);

The beauty of this approach is that
it’s so simple. To add history lists
to your application, you just need
a couple of calls to GetHistoryList
and AddHistoryString for each
history list you implement.

So how does it work? The code is
really quite straightforward. It uses
a .INI file which it’s assumed will
reside in the same directory as
your application. Additionally, it’s
assumed that the .INI file will have
the same base name as the pro-
gram itself. Thus, if the application
is called WHIZZ.EXE the History
unit will use a .INI file called
WHIZZ.INI. By making these as-
sumptions, the History unit can be
made completely autonomous of
the main application. Incidentally,
if you think .INI files are old hat, you
can easily replace all occurrences
of TIniFile with TRegIniFile so that
the code works with the registry
instead. However, in my experi-
ence .INI files tend to be consider-
ably more robust than the
Windows 95 registry. Oops, did I
say that?

The initialisation part of the unit
calls HistoryStartup and arranges
for the cleanup procedure, Histo-
ryShutdown, to be called when the
unit terminates. The HistoryStar-
tup code, in turn, creates the HLists
global which holds the names of all

➤ This sample
program
(Listing 2) uses
the delimited
string class to
list the class
names of the
components
on the System
page of Delphi
1’s component
palette

42 The Delphi Magazine Issue 23

the history lists and, in the Objects
array, subsidiary TStringList ob-
jects which contain the contents of
each individual history list. It then
reads the History section of the .INI
file into memory and parses each
comma-delimited string item into a
history list using the AddList sub-
routine. Unsurprisingly, AddList
makes use of the delimited string
unit to convert each comma-delim-
ited list into a TStringList object.

You’ll notice that for perform-
ance reasons the entire history list
is preloaded into memory when
the application starts running and
isn’t written back out to disk until
the History unit is closed down,
when the application terminates.
The HistoryShutdown code com-
pletely erases the History section
of the .INI file and takes care to
write only those history lists which

contain one or more items. That’s
because a new, empty, history list
is created each time GetHistoryList
is called for a list name which
hasn’t been encountered before. If
no corresponding call to AddHisto-
ryString takes place, you wind up
with an empty history list which is
excluded from the .INI file.

This only leaves the two inter-
face routines, GetHistoryList and
AddHistoryString. GetHistoryList
simply looks up the specified list
name in the “list of lists”, returning
the existing TStringList object if
found. If the designated list isn’t
found, then it creates a new, empty
list, adds it to the list of lists, and
returns it to the caller. AddHisto-
ryList takes care of “freshening”
history list entries as I described
earlier. If the required entry exists
in the history list it’s deleted and
moved up to the top of the list, to
indicate that it’s the most recently

used item. If the entry doesn’t exist
it’s added, taking care to delete the
least recently used item if the list
reaches its maximum capacity.

Limitations
Because I’ve used .INI files, there
are some implementation restric-
tions to consider. I’m not too sure
that .INI files would work properly
with line lengths greater than 255,
and in any event 16-bit Delphi
doesn’t implement strings larger
than this. Accordingly, I’ve limited
the number of items in a history list
to 10 and made the assumption
that the total length of all the items
in the list (plus commas, the key-
name and the = character) doesn’t
exceed 255. This will probably be
fine most of the time, but you will
undoubtedly run into trouble if you
store ten fully qualified pathnames
in a single history list. To get
around this, you might consider

unit History;
interface
uses SysUtils, Classes, WinProcs, IniFiles;
function GetHistoryList(const ListName: String):
 TStringList;
procedure AddHistoryString(const ListName, Str: String);
implementation
uses Delimit;
const MaxStrings = 10;
var HLists: TStringList;
function GetHistoryList(const ListName: String): TStringList;
var Idx: Integer;
begin
 Idx := HLists.IndexOf(ListName);
 if Idx = -1 then
 Idx := HLists.AddObject(ListName, TStringList.Create);
 Result := TStringList(HLists.Objects [Idx]);
end;
procedure AddHistoryString(const ListName, Str: String);
var
 Idx: Integer;
 List: TStringList;
begin
 List := GetHistoryList(ListName);
 Idx := List.IndexOf(Str);
 if Idx <> -1 then
 List.Delete(Idx)
 else if List.Count = MaxStrings then
 List.Delete(MaxStrings - 1);
 List.Insert(0, Str);
end;
procedure HistoryShutdown; far;
var
 Str: String;
 List: TStringList;
 IniFile: TIniFile;
 Idx, Num: Integer;
begin
 IniFile :=
 TIniFile.Create(ChangeFileExt (ParamStr (0), ’.INI’));
 try
 IniFile.EraseSection (’History’);
 for Idx := 0 to HLists.Count - 1 do begin
 List := TStringList (HLists.Objects [Idx]);
 if List.Count > 0 then begin
 Str := ’’;
 for Num := 0 to List.Count - 1 do begin
 Str := Str + List.Strings [Num];
 if Num < List.Count - 1 then
 Str := Str + ’,’;
 end;
 IniFile.WriteString(’History’,
 HLists.Strings[Idx], Str);
 end;
 List.Free;
 end;

 HLists.Free;
 finally
 IniFile.Free;
 end;
end;
procedure HistoryStartup;
var
 Idx: Integer;
 IniFile: TIniFile;
 NamesList: TStringList;
 procedure AddList(const ListName: String);
 var
 Idx: Integer;
 NewList: TStringList;
 ds: TDelimitedString;
 begin
 ds := TDelimitedString.CreateAssign(
 IniFile.ReadString(’History’, ListName, ’’));
 try
 if ds.FieldCount > 0 then begin
 NewList := TStringList.Create;
 for Idx := 0 to ds.FieldCount - 1 do
 NewList.Add(ds [Idx]);
 HLists.AddObject(ListName, NewList);
 end;
 finally
 ds.Free;
 end;
 end;
begin
 HLists := TStringList.Create;
 IniFile :=
 TIniFile.Create(ChangeFileExt(ParamStr (0), ’.INI’));
 try
 NamesList := TStringList.Create;
 try
 IniFile.ReadSection(’History’, NamesList);
 for Idx := 0 to NamesList.Count - 1 do
 AddList(NamesList.Strings [Idx]);
 finally
 NamesList.Free;
 end;
 finally
 IniFile.Free;
 end;
end;
initialization
 HistoryStartup;
{$IFDEF WIN32}
 finalization
 HistoryShutdown;
{$ELSE}
 AddExitProc (HistoryShutdown);
{$ENDIF}
end.

➤ Listing 3

July 1997 The Delphi Magazine 43

modifying the History unit so that
it stores each history item on a
different line of the .INI file. This
was the approach taken by Borland
when they implemented their own
history unit for the 16-bit Delphi
IDE.

If you look at Figure 2 (a partial
dump of the 16-bit DELPHI.INI file),
you can see how this works. Rather

than referring to a history list by
name, Borland refer to a history list
using a number. Thus, the Pro-
jectsOpened list might be assigned
the number 20. This is mapped
onto a section name of History_20
beneath which can be found all the
items for that particular list, one
per line. I don’t quite understand
why the Borland code maintains a

Count key for each list, since the
TIniFile.ReadSection method will
take care of returning all the items
in a particular list. However, each
to his own. The two-level Borland
approach is more complex than my
one-level scheme, but it can handle
larger strings. In time honoured
fashion, if you want to implement
the Borland way of doing things,
it’s left as an exercise for the
reader: it’s not difficult to do. How-
ever, you can easily avoid the extra
complexity and cope with very
long strings simply by using
TRegIniFile rather than TIniFile
(the registry can handle much
longer string entries than .INI files).

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJewell@
aol.com or DaveJewell@compu-
serve.com

➤ The Delphi 1
IDE uses a
more complex
two-level
arrangement
which allows
individual items
in a history list
to be very
long; by using
TRegIniFile,
you can avoid
this complication

44 The Delphi Magazine Issue 23

	A Delimited String Class
	How Not To Design An Operating System: Revisited
	1066 And All That
	Limitations

